The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus).

نویسندگان

  • Michael S Osmanski
  • Xindong Song
  • Xiaoqin Wang
چکیده

Pitch is one of the most fundamental percepts in the auditory system and can be extracted using either spectral or temporal information in an acoustic signal. Although pitch perception has been extensively studied in human subjects, it is far less clear how nonhuman primates perceive pitch. We have addressed this question in a series of behavioral studies in which marmosets, a vocal nonhuman primate species, were trained to discriminate complex harmonic tones differing in either spectral (fundamental frequency [f0]) or temporal envelope (repetition rate) cues. We found that marmosets used temporal envelope information to discriminate pitch for acoustic stimuli with higher-order harmonics and lower f0 values and spectral information for acoustic stimuli with lower-order harmonics and higher f0 values. We further measured frequency resolution in marmosets using a psychophysical task in which pure tone thresholds were measured as a function of notched noise masker bandwidth. Results show that only the first four harmonics are resolved at low f0 values and up to 16 harmonics are resolved at higher f0 values. Resolvability in marmosets is different from that in humans, where the first five to nine harmonics are consistently resolved across most f0 values, and is likely the result of a smaller marmoset cochlea. In sum, these results show that marmosets use two mechanisms to extract pitch (harmonic templates [spectral] for resolved harmonics, and envelope extraction [temporal] for unresolved harmonics) and that species differences in stimulus resolvability need to be taken into account when investigating and comparing mechanisms of pitch perception across animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic analysis of vocal development in a New World primate, the common marmoset (Callithrix jacchus).

In contrast to humans and songbirds, there is limited evidence of vocal learning in nonhuman primates. While previous studies suggested that primate vocalizations exhibit developmental changes, detailed analyses of the extent and time course of such changes across a species' vocal repertoire remain limited. In a highly vocal primate, the common marmoset (Callithrix jacchus), we studied developm...

متن کامل

Frequency discrimination in the common marmoset (Callithrix jacchus).

The common marmoset (Callithrix jacchus) is a highly vocal New World primate species that has emerged in recent years as a promising model system for studies of auditory and vocal processing. Our recent studies have examined perceptual mechanisms related to the pitch of harmonic complex tones in this species. However, no previous psychoacoustic work has measured marmosets' frequency discriminat...

متن کامل

Complex pitch perception mechanisms are shared by humans and a New World monkey.

The perception of the pitch of harmonic complex sounds is a crucial function of human audition, especially in music and speech processing. Whether the underlying mechanisms of pitch perception are unique to humans, however, is unknown. Based on estimates of frequency resolution at the level of the auditory periphery, psychoacoustic studies in humans have revealed several primary features of cen...

متن کامل

Harmonic template neurons in primate auditory cortex underlying complex sound processing.

Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used b...

متن کامل

Dual-pitch processing mechanisms in primate auditory cortex.

Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 21  شماره 

صفحات  -

تاریخ انتشار 2013